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ABSTRACT: Polymeric membranes have been widely used for liquid and gas
separation in various industrial applications over the past few decades because of
their exceptional versatility and high tunability. Traditional trial-and-error
methods for material synthesis are inadequate to meet the growing demands
for high-performance membranes. Machine learning (ML) has demonstrated
huge potential to accelerate design and discovery of membrane materials. In this
review, we cover strengths and weaknesses of the traditional methods, followed
by a discussion on the emergence of ML for developing advanced polymeric
membranes. We describe methodologies for data collection, data preparation, the
commonly used ML models, and the explainable artificial intelligence (XAI) tools
implemented in membrane research. Furthermore, we explain the experimental and computational validation steps to verify the
results provided by these ML models. Subsequently, we showcase successful case studies of polymeric membranes and emphasize
inverse design methodology within a ML-driven structured framework. Finally, we conclude by highlighting the recent progress,
challenges, and future research directions to advance ML research for next generation polymeric membranes. With this review, we
aim to provide a comprehensive guideline to researchers, scientists, and engineers assisting in the implementation of ML to
membrane research and to accelerate the membrane design and material discovery process.
KEYWORDS: machine learning, polymeric membrane, separation, inverse design, material discovery

1. INTRODUCTION
The precise separation of nanoscale molecules and ions from
diverse solutions has gained significant importance in various
industries over the past few decades.1 Membrane technology
has emerged as an effective strategy to achieve this goal due to
its high separation and energy efficiency, low capital cost, and
easy scalability. The benefits associated with membrane
technology has led to its utilization for a variety of applications
such as wastewater treatment, water purification, gas
separation, and resource recovery.2,3 Polymeric materials are
at the forefront of membrane manufacturing as a result of their
outstanding processability, high versatility, as well as excep-
tional mechanical and chemical stability.4 These polymers
possess distinctive chemical and physical characteristics, which
can be tailored to form multifunctional membranes.5 This
diversity allows engineers and scientists to fine-tune polymeric
membranes according to their individual needs such as high
permeability and selectivity.

With the growing use of polymeric membranes for different
applications, a permeability-selectivity trade-off has been
observed due to their intrinsic limitations.6−8 This implies
that polymeric membranes with high permeability typically
possess low selectivity and vice versa. Investigating an exact
property-process-structure relationship to balance this trade-off
is a complex task due to three primary factors: the presence of
numerous features such as material properties and synthesis

variables, the vast material design space, and the lack of
complete understanding of the physics and chemistry of
sophisticated material systems.9,10 Traditional membrane
fabrication is based on a “bottom-up” approach wherein the
polymeric membranes are selected and put through an iterative
trial-and-error process of adaptation and testing to improve
membrane performance metrics.11 These approaches for
membrane design are associated with being laborious and
resource intensive. Alternatively, computational simulation
tools such as molecular dynamics simulation (MD) and
density functional theory (DFT) have shown good potential in
the prediction of material structures and performance to
varying degrees.12,13 However, it is important to note that
these models require high computational demands and thus
their applications are often limited to simpler conditions.14

Instead of using a “bottom-up” approach for membrane
design, where material properties and performance metrics are
calculated after membrane synthesis, scientists need to revamp
their design approach to an inverse design methodology.15
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This approach facilitates effective exploration of the membrane
design space, enabling the identification of novel membrane
materials and optimal fabrication conditions to achieve desired
objectives.16 In this context, artificial intelligence (AI) has
facilitated groundbreaking advancements in the field of design
and discovery of membrane materials.17−19 AI refers to the
study of computer programs or systems that can mimic human
cognitive functions in data analysis, decision-making, and
problem-solving in order to accomplish tasks, such as
understanding natural language, learning from experience,
and adapting to new situations.20 Machine learning (ML) is a
branch of AI focused on the development of algorithms that
leverage data to make predictions and decisions.21 ML has
emerged as a viable alternative to conventional experimental
approach or simulation methods because of its ability to
analyze extensive and complex data patterns. ML can also be
used to reveal insights into the underlying separation
mechanism and find key features that may guide future
membrane design for specific applications.22,23 The utilization
of these algorithms has not only enabled in accurate
predictions of material properties, but also expedited the
discovery of potential material candidates from a vast search
space.17,24 Thus, researchers have demonstrated the applica-
tion of ML to design polymeric membranes for gas separation,
nanofiltration (NF), and pervaporation with the shared
objective of improving specific performance metrics.25−27

The application of AI in material discovery and design of
membranes is a relatively new research area, and the number of
studies in this domain remains limited to prediction, analysis,
and optimization of numerous process conditions. The
previously published review papers in this subfield have
comprehensively highlighted the advancements in state-of-
the-art tools and techniques that assist researchers in applying

ML to membrane science and technology.28−32 A review
positioned at the intersection of the traditional direct design
approach and the ML aided inverse design approach is
currently absent. We aim to supplement the existing reviews by
linking the various substeps involved in building ML models,
from a different perspective that is focused specifically on the
inverse design of membranes and polymeric material discovery.
Researchers have faced several challenges while designing ML
models, such as difficulties in formulating strategies to procure,
clean, and treat data, as well as identifying key features
necessary to support their hypothesis. Additionally, there is a
need for adequate representation of categorical data (e.g.,
polymers, solvents, and ions) in a format that is readable by
computers. The black-box nature of ML models requires the
use of additional tools to understand the relationship between
input features, such as experimental conditions and polymer
characteristics, and output features, such as membrane
performance. It is of vital importance to introduce
comprehensive guidelines on ML methodologies to expedite
the discovery of novel membrane materials, particularly from
the perspectives of environmental science and engineering.

In this review, we illustrate the advantages and drawbacks of
the Edisonian trial-and-error approach and statistical design of
experiments (DoE) for synthesis of high-performance mem-
branes. This leads to a discussion on the necessity for data-
driven approaches such as ML, where we propose a
comprehensive framework, highlighting the various steps
involved in the development of ML models. As part of the
ML blueprint, we cover the data collection and preprocessing
steps, along with various feature generation methods.
Subsequently, we briefly discuss various types of ML
algorithms used for membrane research, implementation of
explainable artificial intelligence (XAI) for model interpreta-

Figure 1. Design and discovery of polymeric membranes by using (A) trial-and-error method and systematic methods including (B) factorial
design, (C) Taguchi method, and (D) response surface methodology.
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tion and validation of the membrane synthesis conditions
obtained using ML via experimentation or computational tools.
We then review relevant case studies on ML-assisted inverse
design material discovery, discussing the research advances
made using high-throughput virtual screening (HTVS),
Bayesian optimization (BO), and generative ML within a
structured framework. Finally, we conclude with a discussion
on the constraints and difficulties of current AI applications in
this domain, pinpointing existing deficiencies, ongoing
progress, future research direction and its environmental
implications.

2. TRADITIONAL APPROACHES OF POLYMERIC
MEMBRANE MATERIAL DISCOVERY

The identification of materials and ideal synthesis conditions to
fabricate polymeric membranes has been an important area of
research for membrane scientists. Polymeric materials are
crucial in the advancement of membranes due to their
exceptional processability, and widespread availability. These
materials will remain vital to membrane technology, as
demonstrated by the chemistry-processing-structure-perform-
ance paradigm.33 The pursuit of improved efficiency, perform-
ance, and environmental sustainability is the driving force
behind the investigation and development of novel polymeric
materials for membrane applications. This undertaking
necessitates a comprehension of polymer physics and
chemistry, as well as a perceptive awareness of the unique
requirements of each application.34 The utilization of trial-and-
error methods and the DoE framework for experimental design
and screening has been pivotal in advancing membrane
technology. The selection between these approaches often
depends on the specific goals, resources, and constraints of the
investigation. The fundamental objective of material scientists
is to enhance the membrane design efficiency to shorten the
research and development cycle, enabling them to keep pace
with rapid advancements in science and technology.
2.1. Trial-and-Error Methods. The trial-and-error ap-

proach has been the fundamental basis for the evolution of
polymeric membrane technology. Researchers using this
methodology combine or choose different polymers based on
established knowledge or assumptions regarding certain
polymer characteristics.35 Subsequently, these polymeric
membranes undergo a sequence of experiments to assess
their appropriateness as potential candidates, with a specific
emphasis on performance metrics, such as permeability,
selectivity, and stability.36 This practical experimentation-
based process is extremely iterative, often requiring numerous
cycles of synthesis and testing to discover a polymer with
desired properties (Figure 1A).

The effectiveness of trial-and-error approaches is greatly
dependent on the researcher’s discernment and expertise.
Researchers select materials and process conditions that show
potential in accordance with their knowledge of polymer
chemistry and the desired characteristics of the membrane.37

While the trial-and-error approaches are characterized by their
simplicity and directness, they are also recognized for being
time-consuming, labor intensive, resulting in the squandering
of resources. Furthermore, the task of predicting results of
trials becomes challenging with a limited comprehension of the
correlation between a material’s structure and its performance.
The selection of the appropriate approach is contingent upon
the particular application, available resources, and desired level
of efficiency. While this approach may require significant time

and resources, it has the potential to produce unforeseen
results, often resulting in significant advancements that might
not be attainable through more systematic methods.
2.2. Experimental Design and Screening. Although

trial-and-error method is still useful due to its simplicity, a
systematic approach to design high performance membranes is
necessary.38,39 The utilization of experimental design methods
provides an efficient strategy to synthesize membranes by
leveraging statistical tools to optimize experiments, analyze
data, and evaluate outcomes.40 This enables in a focused
exploration of synthesis conditions, pinpointing the key
parameters that impact performance and their ideal values in
membrane applications.41 Although it demands sophisticated
statistical expertise and possibly a larger initial investment, this
method provides a more profound understanding of the
relationships between structure and properties. Consequently,
it guides the design of polymeric membranes in a more
efficient manner.

The DoE is a comprehensive framework with multiple
experimental designs. It provides variety and robustness in
organizing, analyzing, and interpreting controlled tests to
evaluate the factors that influence the value of a parameter or
collection of parameters. It can be tailored to accommodate a
broad spectrum of factors and enables a thorough examination
of cause-and-effect relationships. Utilizing statistical methods
and factorial designs, DoE can effectively minimize the number
of required experiments, resulting in expedited and econom-
ically efficient research. The field of DoE encompasses a range
of methodologies, including factorial designs, Taguchi
methods, and response surface methodology (RSM).42−44

Factorial design is a fundamental technique in DoE that
effectively investigates the impact of individual factors and
their interactions, which is essential for comprehending
intricate systems (Figure 1B). This approach is especially
beneficial when examining a significant number of factors as it
offers a thorough understanding of how these variables affect
the desired outcome. Scientists frequently utilize factorial
design approaches to methodically investigate the impacts of
different polymers and additives on membrane character-
istics.45,46 Identifying viable material combinations and
creating a baseline for further optimization is a critical step
in this process. Scientists can determine the performance
characteristics of membranes by changing elements, such as
polymer type, pore-forming agents, and cross-linkers.39,47 The
Taguchi Method, well-known for its emphasis on robust and
resilient design, aims to minimize variability and improve
product quality by reducing susceptibility to external noise
factors (Figure 1C). The utilization of orthogonal arrays
optimizes the experimental procedure, reducing resource
requirements while providing significant insights on the
impacts of various parameters.48 The RSM is utilized for
comprehensive process optimization (Figure 1D). This
method is highly effective when the relationship between the
input factors and the output responses is not well understood.
It involves a series of planned experiments to establish a
mathematical model that accurately represents a response
surface map. This assists in the investigation of the most
favorable conditions to achieve the desired outcome.49 These
methods (i.e., Factorial design, Taguchi, and RSM) are highly
valuable in optimizing the synthesis and processing conditions
for polymeric membranes. By enabling researchers to pinpoint
the most relevant elements and their interconnections, these
methodologies enhance the efficiency of membrane develop-
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ment.50 Table S1 (Supporting Information) provides a brief
overview of various traditional methods used for exploring
optimal process parameters for membrane design.
2.3. Challenges and Limitations of Traditional

Methods. Traditional methods for discovering and designing
polymeric membranes have largely depended on empirical
approaches, particularly the trial-and-error testing of various
material combinations and processing conditions. Researchers
typically synthesize polymers and then evaluate their
membrane-forming capabilities, focusing on properties like
permeability, selectivity, mechanical strength, and chemical
stability. This often leads to a repetitive cycle, where the
synthesis stage is revisited to adjust polymer compositions or
processing parameters, continuing until a material meets the
desired criteria. On the other hand, DoE can pose challenges
due to its complexity, requiring a high level of statistical
competence for successful execution. Based on various
experimental design methodologies (e.g., full factorial, central
composite design, and Box-Behnken), researchers develop an
experimental design matrix by fixing one variable and
systematically varying the levels of other variables to generate
the required experimental combinations. Conducting and
evaluating experiments can be labor-intensive, and the cost
associated with extensive experimental trials can be consid-
erable, especially in intricate multifactorial designs.50 In certain
cases, researchers may integrate multiple design approaches to
find the optimum response which can lead to increased
operational difficulty.51 A major drawback of these conven-
tional methods is their unpredictability, making it difficult to
predict which polymers will perform effectively as membranes.
Moreover, both approaches can be environmentally and
economically burdensome, particularly due to the extensive
use of chemicals and solvents in polymer synthesis and
processing, which could be a constraint for smaller research
teams or institutions with limited budgets.52,53

The trial-and-error approach often relies on using theoretical
equations to model transport and describe the underlying
separation principles of membrane processes (e.g., Solution-
diffusion, extended Nernst-Plank, Donnan-steric pore model
with dielectric exclusion).54−57 DoE, on the other hand,
develops first- or second-order models to approximate the
membrane performance based on the synthesis conditions or
membrane properties.58,59 These models are easy to interpret,
but they struggle to capture the complex nonlinear relation-
ships between synthesis conditions, membrane properties, and
membrane performance. To address the limitations of
traditional methods, ML algorithms are increasingly integrated
into the discovery process of polymeric membrane materials,
offering a potential to accelerate innovation and drive a
paradigm shift in the field.30,32,60,61

3. MACHINE LEARNING FOR POLYMERIC
MEMBRANE MATERIAL DISCOVERY

Leveraging massive data, ML uncovers the intricate relation-
ships between input variables and outputs, enabling predictions
without possessing an extensive domain knowledge.62 This
approach can surpass the traditional, time-consuming, and
costly methods for membrane design, offering a more efficient
and cost-effective pathway to innovation in membrane
technology. It is impossible to screen all possible polymeric
materials for optimizing membranes by using traditional
methods given the huge number of polymer candidates, each
possessing unique physical and chemical properties. ML has

been successfully used to tackle this problem since it enables in
rapid screening of materials for membranes, reducing the time
and effort required for experimentation or computational
assessment.63 A typical workflow for the development of
polymers using ML approaches is as follows: (1) Data
collection: Acquisition of comprehensive, high-quality data is
indispensable for building robust ML models that predict
membrane performance. Data set for ML can be exper-
imentally generated, extracted from existing literature, or
obtained from simulations. (2) Data preprocessing and feature
generation: Preprocessing the data collected to handle missing
values and outliers. The data can be normalized or scaled to
ensure uniformity within the ranges of input variables.
Additionally, the structural information from categorical
variables needs to be converted into machine-readable
representations for ML model use. (3) ML model develop-
ment: After the data is preprocessed, several ML algorithms
can be used depending on the nature of the problem and data
characteristics. (4) ML model interpretation: Interpreting ML
models helps identify the features that are most important to
the model’s performance. This can narrow down the search
space for new polymer candidates or find optimal experimental
parameters. (5) Validation: Based on the fabrication conditions
or polymeric candidates screened using the ML models, we can
validate the model either experimentally or through computa-
tional tools (Figure 2).

3.1. Data Collection. In the context of employing ML for
polymer membrane research, the significance of data cannot be
overstated. The effectiveness of ML models is significantly
impacted by the quality and quantity of data they are trained
on. One of the more pronounced challenges in developing
robust ML models is associated with the limitation in the
available data, especially in maintaining high quality. Smaller,
low-quality data sets fail to represent the full diversity (either in
terms of the number of data points or the required number of
features) of the entire data population, which can result in
biased predictions. Training with small data sets often results
in overfitting as the model learns noise in the data instead of
intended underlying patterns, compromising its ability to
generalize to new, unseen data. Larger, high-quality data sets
can help overcome these shortcomings by reducing bias,
improving feature representation and allowing more room for
models to generalize beyond the training data. There is a lack
of well-defined criteria to identify low quality data, which
makes it difficult to evaluate data reliability. Cross-checking the
data can improve the quality of the data set by identifying
outliers or unreliable data points. A commonly accepted
guideline to prevent overfitting and enhance the model

Figure 2. Machine learning pipeline for the inverse design and
discovery of polymeric membranes.
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reliability is to ensure that the data set includes at least ten
times more data points than the number of input variable
types.64 Common data collection methods are described in the
following subsections.

3.1.1. Traditional Method and Medium/High-Throughput
Experimentation. Manual experimentation is a common
method to generate high quality data. Experimentation within
a closed laboratory environment allows for quality control and
standardization, which is critical to the data collection process.
The biggest issue with this method is that it is extremely time-
consuming and requires a lot of manpower. It is exceptionally
difficult to conduct hundreds of experiments and generate a
data set. Thus, using this experimental approach to develop a
comprehensive data set could take months or years. Glass et al.
devised a high-quality data set with only 50 data points to
predict water permeance and zeta potential of polymeric
membranes. They obtained high coefficients of determination
(>0.9) using gradient boosting methods, showcasing the
potential of in-house derived data sets in ML.65

Medium/high-throughput experimentation has emerged as
an effective approach to conduct a vast array of experiments
simultaneously or through automated methods. These
methodologies are often coupled with combinatorial ap-
proaches, where various factors or variables are systematically
combined in different permutations to identify optimal
operational or synthesis conditions. For example, Cano-
Odena et al. used a high-throughput setup (HTS) to find
the optimum parameters for the removal of ibuprofen using
cellulose acetate-based NF/RO membranes.66 The authors
were able to complete the entire experimental work within 3
months, including the time required for optimization using
genetic algorithms. In another study, Ignacz et al. designed a
medium-throughput setup (MTS) crossflow system that
enabled them to collect around 1,938 rejection data points
measured for 3 membranes and 10 green solvents. This
comprehensive data set allowed for an in-depth analysis of
membrane performance and selectivity, as well as an
exploration of the correlation between the molecular weights
and selectivity.67 As demonstrated in the aforementioned
studies, HTS/MTS has shown its potential in generating
extensive data sets for ML, data analysis, and optimization
processes.

3.1.2. Data Collection from Literature. The most widely
used approach to curate a data set for ML is data mining from
literature.68,69 Using journal databases like Google Scholar,
Scopus, and Web of Science, researchers can manually find
publications and articles related to their problem statement for
data extraction. This method is much more resource efficient
as compared to performing new experiments since it leverages
the studies conducted over the past few decades. However, the
data found in research papers is often sparse and presented in
various formats (e.g., tables, graphs, figures, or text), with no
standardized reporting criteria available.

Researchers have used a combination of input variables
representing the membrane and polymer properties to predict
membrane performance metrics such as water/solvent/gas
permeability, salt rejection, gaseous selectivity, membrane
fouling characteristics, conductivity, ion selectivity, and ion
transport rate for their desired application.13,26,70,71 In Table
S2 (Supporting Information), we have listed several examples
of the different labels used to collect data. Extraction of data
requires domain knowledge to navigate through the literature
and find the relevant data points. This process is quite tedious

and time-consuming since finding relevant articles with all the
key features is required to build accurate ML models. The
challenges associated with manual data collection have
prompted researchers to seek computational (DFT and MD)
tools for data generation and natural language processing
(NLP) based methods to expedite the data collection process
which will be explained in Sections 5.2 and 5.3.
3.2. Data Preprocessing and Feature Generation.

After data collection, the raw data need to be cleaned and
prepared to make it suitable for further analysis or employment
in ML models. Data preprocessing or pretreatment has several
aspects associated with it. Data cleaning involves the
identification and rectification of errors, removal of duplicate
entries and outliers from a data set. This is to improve the
quality and integrity of data while avoiding any biases.64 Data
imputation is the process of filling in missing values in a data
set with substituted values. This is typically done when a data
set has missing values for some of the features, which is usually
the case when data is mined from literature. Some researchers
use either mean or median values to impute data sets, whereas
others utilize data collected in its raw format (true missing
values) since these features have physical and chemical
properties.72 Data normalization is the process of adjusting
data distribution to make it suitable for ML analysis. This
involves standardizing the data to have a mean of zero and a
standard deviation of one and transforming the data to follow a
normal distribution. For categorical features, it is important to
convert them into computer readable forms as ML models
typically cannot process categorical features (e.g., types of
polymers, solutes, or solvents) directly.73 Examples of these
computer-readable forms include one-hot encoding (trans-
forming categorical data into binary vectors), label encoding
(assigning each category a unique integer), and binary
encoding (a hybrid method that combines aspects of both to
efficiently handle numerous categories with minimal data
expansion).16,74

Feature generation, also known as feature engineering, is a
strategic process of creating new features from both numerical
and categorical features to improve ML model performance.
The goal of this process is to transform (e.g., combination or
decomposition) the existing features into more informative and
insightful forms.75 By using domain knowledge, we can
incorporate attributes potentially relevant for predictive
analysis, improving the capability of the ML models to discern
complex patterns and relationships. For example, water
composition such as types of ions in feedwater can influence
charge effects, osmotic pressure, and scaling in membrane
experiments. Instead of listing all cations and anions with their
concentrations, utilizing ionic strength can be more informa-
tive and simpler feature for ML. Descriptors are fundamental
representations of chemical structures, playing a crucial role in
feature generation. Traditional descriptors encompass compo-
sitional, structural, and spectral information. In the context of
polymer materials, the macromolecular chains consist of
repeating units linked by covalent bonds. The properties of
materials are directly influenced by the structures and
compositions of these repeating units. As a result, the focus
of research on polymer descriptors revolves around the
characterization of these repeating units.76 The following
subsections discuss the most frequently used descriptors to
represent categorical features.

3.2.1. Line Notation. Simplified molecular-input line-entry
system (SMILES) is a widely used format to represent the
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structure of molecules.77,78 SMILES strings consist of
alphanumeric characters that represent atoms and bonds in a
molecule.79 It encodes all the atoms, bonds, rings, and
branches of the molecule. An important aspect of SMILES
strings is that they can be directly used as a descriptor in ML
models or they can be transformed to other descriptors.80

Thus, SMILES strings play a crucial role in representing
molecules in a format that can be easily processed by ML
algorithms, facilitating the application of ML in polymer design
and development.

3.2.2. Polymer Fingerprinting. Polymer fingerprints are
compact and lossless representations of polymer structures that
capture important structural features, such as monomer
sequences, branching patterns, and functional groups. Morgan
fingerprints (MF) are the most widely used fingerprinting
method in membrane design. MF captures the substructure
around non-hydrogen atoms within a defined radius and
converts the molecules into binary vectors which are suitable
for ML model training. The formation of these binary vectors,
however, can result in “bit collision” wherein the representa-
tion has a single encoding for the multiple functional groups.
This means that random substructures without any contribu-
tion to the performance get included in the model training
process and its subsequent interpretation. Increasing the
number of bits (fingerprint size) is one way to tackle the
issue, however, it requires higher computational power to
process due to increased number of features. A newer method
such as molecular access system (MACCS) key vectorization
helps address “bit collision” by mapping the specific
substructures to individual indices.81 Additionally, binary
morgan fingerprints can only capture presence/absence of a
substructure, not how many times they occur. Count-based
morgan fingerprints can tackle this problem since they can
count the number of times each chemical bond occurs
resulting in a more accurate representation of the polymer.82

Molecular embedding and molecular graphs are two other
commonly used methods for polymer fingerprinting. Molecular
embedding generates continuous vector representations of
substructures, allowing for the measurement of similarity
between different structures, while molecular graph represen-
tations view a molecular structure as an undirected graph,
making it particularly suitable for applications of deep learning
in polymer materials.83

Apart from the standard methods used for polymer
fingerprinting, group contribution method has been used to
determine the structural groups present in the polymer sets.
The basic assumption is that the polymeric properties can be
represented as a weighted sum of the individual contribution
by its constituents. The Bondi method, the Marrero and Gani
method, and the Yampolskii’s method are common approaches
that have been used to predict gas permeability of polymeric
membranes.84,85 The newest toolbox in polymer fingerprinting
is inspired by the transformer-based architecture for NLP.
Kuenneth and Ramprasad present polyBERT, a novel method
that outperforms the traditionally used approaches for polymer
fingerprinting.86 The authors trained a model on a vast data set
of polymer SMILES (∼100 million hypothetical strings),
enabling it to understand the grammar and syntax of polymer
chemical language. This fingerprinting approach has significant
potential for polymer property prediction, polymer structure
prediction, and the design of new polymers.

3.2.3. Molecular Descriptors. Molecular descriptors en-
compass a wide range of features derived from the molecular

structure that can be used in ML models.87 These descriptors
are quantitative representations of chemical compounds that
capture various aspects of their chemical and physical
properties.88 Molecular descriptors can be generated using
professional descriptor generation software, such as Dragon, or
open-source toolkits, such as Mordred or RDKit. Ritt et al.
represented anions using molecular descriptors to study the
thermodynamic mechanism associated with the design of
single-species selective membrane. They were able to showcase
the importance of various molecular features (i.e., structure,
polarizability, interactions, electrostatics, macroscopic, con-
fined polarizability, confined interactions, and confined
electrostatics) that affected the transport of anion of through
a cellulose acetate membrane.89 In another study, Ignacz et al.
obtained the best descriptors that showcase the effect of
different functional groups present in solutes on their rejection
in organic solvent nanofiltration (OSN).90 Researchers have
also converted chemical structure of cationic and anionic
groups into extensive molecular descriptors to predict ion
conductivity of polymer-based ion-exchange membranes.91,92

Quantitative structure activity-relationships (QSAR) and
quantitative structure property-relationships (QSPR) have
been widely utilized to model the physical and chemical
properties of molecules on the basis of their chemical
structures.93,94 These generated properties can be used as
molecular descriptors in ML models since they assist in the
feature generation of (1) specific molecules we aim to separate
or (2) polymers used to design membranes.65,95,96 This
extensive representation enhances the ML models and can
potentially be used to design membranes for tailored
applications.
3.3. ML Model Development and Approaches. Once

the data set is preprocessed and the relevant descriptors are
added to transform the data set, it is ready to be used for
training ML models depending on the requirements.
Supervised and unsupervised learning have been widely used
in the research of polymer membrane design. In supervised
learning, the algorithm is trained on a labeled data set to map
the input feature to outputs (membrane performance). In
unsupervised learning, the algorithm is provided with
unlabeled data to find patterns or structures within the data
without any predefined model output.97 This is in contrast
with the traditional design methods or supervised learning
wherein researchers focus on performance metrics of the
membrane to gain insights and develop a hypothesis.
Researchers have obtained unforeseen results using unsuper-
vised learning since they can group high-performance materials
based on their properties allowing for efficient exploration of
new candidates for their desired application.98,99 ML
algorithms that are commonly used to model polymeric
membranes are provided in Table S3 (Supporting Informa-
tion).
3.4. ML Model Interpretation. After ML algorithms are

applied to our data set, the best performing model is selected
based on the chosen model performance metric (e.g., mean
absolute error, mean squared error, root mean squared error).
Due to the “black box” nature of ML models, XAI tools have
been employed to understand and interpret the model’s
predictions. These tools can identify the influence of features
on the model output and present the contribution of each
descriptor to polymeric membrane performance which can
guide membrane design and material discovery. In the
subsequent subsections, we discuss the two most commonly
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used XAI tools for ML model interpretation, namely Shapley
additive explanations (SHAP) and partial development plots
(PDP)

3.4.1. SHAP. The SHAP method is a commonly used
technique that provides insights into the decision-making
process of a ML model. It can find the impact of the polymer
features on the membrane performance.100 The SHAP values
for an input feature x gives the prediction p as

= | |! | | !
!

[ ]
\

p
S N S

N
p S x p SO ( )

( 1)
( ) ( )x

S N x

where S is the subsets of all features without feature x, N is the
set of all features, p(S ∪ x) are the predictions by the built ML
model considering feature x, and p(S) are the predictions
without considering feature x. The differences among all
possible subsets of S ⊆ N\x are calculated due to the
dependency of the effect of withholding a feature on other
features in the ML model.101

The SHAP values indicate the impact that a specific feature
has on membrane performance. Positive and negative SHAP
values indicate positive and negative contributions to
membrane performance, respectively. Moreover, features with
higher absolute SHAP values have greater contributions on the
particular performance indicator (i.e., higher influences on the
target variable).102 Tao et al. correlated the polymer’s
functional groups to fractional free volume (FFV) of the
membranes using SHAP analysis. They were able to validate
the impact of experimentally verified concepts, such as the
positive contribution of rigid aromatic rings or phenyl groups
to the FFV of polymeric membranes. They also found that
carbonyl group density had a positive influence on the
transport properties of polymer membranes.103 Jeong et al.
evaluated whether the knowledge gained by ML for membrane
separation aligned with the fundamental principles of
membrane science. Using SHAP analysis, the authors were
able to reveal the influence of several factors (i.e., the
properties of membranes and solutes) on the membrane
performance, demonstrating that ML was able to understand
the complex mechanisms of membrane separation.22 Gallage
Dona et al. used SHAP analysis to rank the most important
polymer and molecular descriptors for determining the ion-
activity coefficients of polymer ion exchange membranes
(IEMs).104 These coefficients play a crucial role in the ion-
transport process across the membrane, directly influencing
selectivity in IEMs. In another study, Gao et al. developed an
ML model that highlighted the fundamentals of ultrafiltration
(UF) membrane design. The authors identified the most
significant membrane features and fabrication conditions that
need to be optimized for the design of high-performance UF
membranes.72

3.4.2. Partial Development Plots (PDP). PDP is a graphical
representation showing the relationship between specific
features and the predicted outcome of a model while keeping
all the other features constant. They help in understanding the
marginal effects of a single feature on the output that assists in
model interpretation. The average partial dependence function
for a feature S, fs can be calculated using

= [ ] =f E f x x f x x dP x( , ) ( , ) ( )s x s c s c cC

where feature variable C is the complement of S; xc and xs are
their feature vectors, respectively.105

Wang et al. developed a ML model to screen polymeric
materials for pervaporation application. They performed PDP
for total flux and separation factor against water contact angle,
membrane thickness, Hildebrand solubility parameter, and
operational parameters. The PDP studies gave insight on the
relationship between the features and their effects on the ML
model predictions.27 Guan et al. used PDPs to optimize pore
size and BET values of MOFs for synthesizing mixed matrix
membranes with CO2 permeability and CO2/CH4 selectivity
that surpasses 2008 Robeson upper bound.106 Deng et al.
applied PDP to identify the suitable fabrication candidate
space for membranes that exhibited high mono/divalent ion
selectivity. They were able to synthesize four new membranes
that exceeded the present upper bounds of the permeability-
selectivity trade-off.107 Researchers also studied the importance
of structural and operational features of polyamide nano-
filtration (PA-NF) membranes using PDP plots to achieve high
water/salt selectivity. The authors determined the ideal ranges
of pore radius and zeta potential to achieve high mono/
divalent salt selectivity for both anions and cations.105,108 Li et
al. developed a model to study the permeability-selectivity
trade-off on thin film nanocomposite reverse osmosis (RO)
membranes. Using bivariate PDPs, the authors identified
optimal ranges for nanoparticle loading and nanoparticle size,
enhancing both the relative water permeability and relative salt
passage for RO membranes. They later used these results as
input conditions in their ML model and found improved
outcomes in their model-optimized experiments.109

Regardless of their results in visualizing the factors
associated with exceptional membrane performance, the results
from PDP should be carefully evaluated before they are
directly applied to experimental design. These plots may
produce misleading visuals while extrapolating to regions with
little data, often resulting in artificial trends beyond the values
at extremities for any specific feature.
3.5. Validation. The final step involves validation of the

ML models using laboratory experimentation or computational
tools. MD is a computational technique that helps in studying
the dynamic behavior of molecules and materials at the
molecular level. The simulation involves numerically solving
the classical equations of motion for a system of interacting
particles (atoms or molecules) over a specified time period. It
is an important tool in the field of membrane science,
facilitating the development of structure−property-perform-
ance relationships.110

Xu et al. validated an ML model developed to study the
permeability and behavior of OSN membranes using both MD
simulation and experimental studies. MD simulation was not
only able to predict the methanol permeability of polymer
intrinsic microporosity (PIM) membranes, but it also provides
new insights into their swelling behavior. These membranes
were also experimentally fabricated in the lab and tested for
their methanol permeability to validate the ML model. The
experiments indicated that the PIM-1 membranes had
complete solute rejection with methanol permeability close
to the predictions of the ML models.111 Through their
pioneering study, Barnett et al. developed a ML model with a
gas permeation data set of 700 polymers. This model was used
to predict the gas permeation behavior of over 11,000
polymers and discovered more than 100 polymers exceeding
the Robeson upper bound line for O2/N2 and CO2/CH4 gas
pairs. The researchers validated the results by fabricating two
novel polymeric membranes and testing their performance for
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the separation of CO2/CH4. The experimental results for the
novel polymeric membranes closely matched the predicted
values from the ML model, falling within the prediction error
margin.25 In another investigation, Tayyebi et al. identified the
key chemical functional groups which can positively or
negatively affect membrane performance using SHAP analysis.
They leveraged this knowledge to synthesize grafted PA-RO
membranes which was able to surpass the water permeability/
salt selectivity trade-off. They further characterized their ML
developed membranes using Fourier transform infrared
spectroscopy (FTIR), scanning electron microscopy (SEM)-
energy dispersive X-ray spectroscopy (EDS), thermogravimet-
ric analysis (TGA) and contact angle measurements which aids
in understanding the underlying physical and chemical
properties of the ML designed membrane.112

4. ML-DRIVEN INVERSE DESIGN AND MATERIAL
DISCOVERY OF POLYMERIC MEMBRANES

The acceleration of material discovery using data-driven
approaches in polymeric membrane research marks a
significant shift from traditional trial-and-error methodologies
to more efficient design strategies. Using ML as an inverse
design methodology will greatly reduce the time and effort
required to design and explore new materials to synthesize
high-performance membranes.29,113 Unlike the traditional trial-
and-error method, which is time-consuming and inefficient
since it involves testing of candidate materials until those with
the desired properties (materials → property) are obtained,
inverse design begins by selecting the desired properties of
material and then work backward to identify materials that can
achieve those properties (property → materials).114−116

Inverse-design approach can also be used to simultaneously
optimize multiple target properties, a challenge that is often
difficult to address using the traditional approaches.117,118

The first step of inverse design is to define the scope of the
design problem, which involves identifying the input variables
(e.g., chemical composition, molecular structure, and mem-
brane fabrication conditions) and specifying the target
properties (e.g., permeability, hydrophobicity, and mechanical
strength). The next step is data collection and generation, as a
comprehensive and high-quality data set is crucial for training
accurate ML models. Considering the high computational
demand for optimization process, it is important to focus on
the most relevant characteristics of polymers and membrane
fabrication conditions to define design space, while minimizing
the inclusion of less important, irrelevant input variables. To
use ML models effectively, the chemical structures of the
polymers must be converted into a machine-processable
format, as explained in Section 3.2. Recent advancement in
polymer informatics plays a substantial role in facilitating these
applications by allowing adequate representation of polymers
that meet the desired design criteria. ML models which are
carefully curated using novel algorithms and feature
representations can be interpreted using XAI to provide
insights into the underlying principles guiding the separation
process. They are also used to identify the desirable physical
and chemical properties or membrane fabrication conditions
critical to the design of high-performance membranes. Wang et
al. developed a ML model to predict the membrane
performance of layer-by-layer (LbL) membranes and expedite
the exploration of polymer candidates. They conducted SHAP
analysis of Morgan Fingerprints which helped in identifying
the key atomic groups conducive to high permeability and

selectivity. This analysis generated a reference Morgan
fingerprint which was mapped against PoLyInfo database
using Tanimoto coefficient screen similar candidates.119 The
authors were able to find 23 potential polymers that can be
used to synthesize LbL NF membranes.120 In addition to using
XAI as a tool for membrane design, scientists employ other
methodologies to navigate the vast polymer candidate and
fabrication space, such as (1) high-throughput virtual screen-
ing, (2) global optimization, and (3) generative ML.
4.1. High-Throughput Virtual Screening. Candidates

may often be overlooked using the traditional approaches since
researchers usually focus on evaluating previously reported
high-performance materials or those with similar chemical
structures. ML models with high prediction accuracy enable us
to curate a high-throughput virtual screening (HTVS) setup
that can be used to screen potential polymer candidates.121 In
a HTVS setup, researchers can define the ideal performance
metrics, physical and chemical properties, and functionalities
which can be used to screen several polymeric candidates at
the same time without conducting any experiments. ML
models can predict performance metrics for previously
untested candidates, helping narrow down the number of
potential candidates from a large selection pool. Yang et al.
devised a HTVS setup to identify potential polymeric
candidates with a high potential for acetic acid extraction
from water using pervaporation. In the first stage, they
screened ∼180,000 potential polymeric candidates from the
PI1M database (which includes 1 million polymers from
Polymer Informatics database) based on their similarity (>0.9)
to the polymers used to train their ML model. This was
followed up by further screening of the selected polymeric
candidates based on predicted permeation separation index
(indicating performance) and synthetic accessibility score
(indicating ease of synthesis), ultimately identifying 10
potential polymer candidates for pervaporation.122 It is also
recommended for researchers to not only rely on predefined
performance metrics, but also use their intuition, expertise, and
knowledge to define better selection criteria and build more
robust HTVS setups.123

4.2. Bayesian Optimization. Global optimization tools
such as Bayesian Optimization (BO) have also demonstrated
their great potential in a variety of inverse design problems in
materials engineering.124 BO is an iterative approach that
allows the exploration of design conditions using surrogate
functions and acquisition functions to build an optimization
model to guide membrane design. A surrogate function is
essentially a ML model trained on available experimental data,
wherein the model can be used to approximate membrane
performance metrics based on the input features. This
surrogate model estimates membrane performance metrics
on the chosen exploratory design space. The acquisition
function can then be used to determine which experiments are
most likely to be successful.125 Gao et al. combined ML and
BO to guide experimentation in discovering high performance
PA-NF membranes capable of surpassing the current upper
bound for permeability-selectivity trade-off.126 The surrogate
model was trained using the data obtained from synthesis
conditions. The BO function was then used to identify new
combinations of monomers and fabrication conditions within
the input design space. Using these conditions, the authors
synthesized 8 membranes that were able to surpass upper
bound for the water permeability-salt selectivity trade-off. This
validated the ML model’s capability to discover new
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monomers and synthesis conditions that enhance membrane
performance. BO is not only limited to experimental design,
but it can also assist in the material discovery process. Chen et
al. used a Bayesian algorithm to modify existing polymers
within a data set to discover 200 new polymers showing
exceptional separation performance for CO2/CH4 and CO2/
N2.

127

Given the large number of influencing factors on membrane
design, new methods have been developed to apply BO to
these high dimensional parameter spaces, while minimizing the
computational demands. Gui et al. proposed a taking-another-
step BO (TAS-BO), which offers a simple-yet-effective strategy
to tackle high dimensional BO problems. At each iteration, a
local Gaussian process (GP) is trained using points
neighboring the current candidate. This coarse-to-fine local
search enables a more efficient exploration of the search
space.128 A strategic optimization approach can also enhance
the efficiency of the discovery process. Dalal et al. used a batch
BO to efficiently explore a vast design space of over 5,790
polymer formulations for optimizing pDNA and CRISPR-Cas9
ribonucleoprotein delivery.129 The BO predicted the most
promising formulations in sequential rounds, significantly
reducing the design space. After three rounds of optimization,
they sampled less than 10% of the design space while
identifying the top-performing polymer combinations for
delivery efficiency and cell viability.
4.3. Generative ML. Generative ML techniques, such as

RNNs or graph-based design tools, can also be used to
navigate the chemical space and accelerate material discovery
by generating new data points based on previously trained
data.130−132 In general, high dimensional polymeric data is
scaled down to a lower dimension to capture relevant features,
which are then used to generate new polymeric candidates.133

These candidates can be tested using accurate ML models built
on training data, enabling us to screen newer high-performance
materials. Yang et al. trained a ML model with 778 polymers
mapping their Morgan fingerprints to their gas permeabil-
ities.134 This helped them develop an accurate ML model for
predicting the permeabilities of 9 million new polymers that
had never been tested before for gas separation. These 9
million polymers were generated using (a) RNNs trained on
SMILES strings of existing polymers, (b) theoretical chemical
reaction between binary pairs of dianhydride and diamine
which yields polyimides, and (c) ladder polymers generated
using a combination of monomer combinations and RNN
generation. They used the ML model to predict the
permeabilities of these polymeric membranes to identify new
candidates surpassing the Robeson upper bound. In another
study, Giro et al. developed an inverse-material design
workflow to design new monomers for carbon capture with
targeted property ranges for the permeability of CO2, glass
transition temperature, and half-decomposition temperature.
They represented the input molecules as feature vectors
(containing encoded information related to molecular building
blocks of the monomer) whose features were extracted using
regression modeling. These feature vectors were optimized
using Particle Swarm Optimization and converted to molecular
structures using a graph-based McKay’s Canonical Con-
struction Path Algorithm to generate new polymeric structures
with desired properties.135,136 Even though genetic algorithms
(GA) are not traditionally classified under the generative ML
umbrella, researchers generated new polymer compounds

using them based on the chemical fragments present in the
polymer data set.137

Despite the unforeseen performance showcased by the
hypothetical candidates engineered using these generative
techniques, their synthesis can be quite complex which limits
its application. Including synthetic accessibility score within
the screening or design process is one way to tackle this
problem, however, more research regarding their synthesiz-
ability is desired.123 Another major factor that governs the use
of generative ML models is the requirement for high-quality
data sets to capture the relevant features. Poor quality in
training data would result in the formation of unrealistic
samples.28

In Table 1, we explore a series of success case studies using
ML to enable the discovery and design of new polymeric
membranes, organized within a comprehensive framework.
These case studies aim to provide an overview of the synergy
between ML and polymeric membrane technology, high-
lighting current advancements and its future potential in our
field.

5. RECENT PROGRESS, FUTURE DIRECTIONS, AND
PERSPECTIVES
5.1. ML Algorithms for Polymeric Membrane Tech-

nology. The separation and purification performance of
membranes depends on a variety of factors including synthesis
conditions, operational conditions, and the structural, chem-
ical, and functional properties of membranes, solvents, liquids
and gases. Due to the complexity of this process, researchers
are trying to develop new, robust ML algorithms to predict the
properties and performance of the polymeric membranes,
which can provide a better understanding of their separation
mechanisms.

Graph neural networks (GNNs) are a type of neural
network designed to operate on graph-structured data, where
graph consists of nodes (representing entities) and edges
(representing the connections or relationships between these
entities). GNNs leverage the inherent structure of graphs to
capture the relationships in the data and does not require
extensive feature engineering or representation design.140

Ignacz et al. used GNNs to model solute−solvent-membrane
interactions and understand the structural impact of solutes
and solvents on the performance of OSN membranes. With the
help of GNNs, they were able to visualize the effects of
functional groups and substructures and further extract the
atomic and bond level information on the molecules of
interest.141 Queen et al. also used GNN to develop
POLYMERGNN, a model that allows for the prediction of
polymeric properties.142 In an attempt to improve the standard
deep learning model, Li et al. developed a three-component
residual ANN (R-TNN) to study the water permeability and
salt selectivity trade-off in TFN-RO membranes. Using this
approach, the authors were able to adjust the model such that
the first two networks emphasized on learning the data from
relative water permeability and relative salt rejection, while the
other layers focused on feature analysis and gaining knowledge
from the previous networks. The authors demonstrated that
this modified network outperformed neural networks and ML
models (RF, K-nearest neighbor, XGBoost, and adaptive
boosting trees) in predicting membrane performance.109 Cui et
al. combined MD simulations with density peak clustering
algorithm based on unsupervised learning to model the ionic
channels of membranes. They were able to visualize and
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quantify the properties of the ionic channels which helped
them study water transport across proton exchange membrane
fuel cells.143 Transformer models have also gained huge
attention for the property predictions of polymers. Xu et al.
developed TransPolymer, a transformer-based language model
to predict the various properties of polymers, which include
their electrolyte conductivity, electron affinity, ionization
energy, and refractive index.144 Zhong et al. used generative
pretrained transformer (GPT) based models to develop QSAR
relationships for water contaminant properties using SMILES
strings. These models outperformed CatBoost-based QSAR
models.145 The algorithms mentioned above can improve data
visualization and membrane performance predictions allowing
for better research outcomes.

Integrating ML models with physical and chemical principles
can further improve the prediction accuracy of the models and
deepen our understanding of membrane separation. Rehman et
al. developed a physics-informed deep learning model to study
ion transport across polyamide membranes. They integrated
charge conservation laws into the deep learning model, which
led to an improvement in the prediction of membrane
performance.146 Lee et al. also developed a physics-informed
ML model to study the diffusion of gases through polymeric
membranes. Using physical equations, the authors enforced the
neural network to learn the physical relationships governing
the diffusion process for the prediction of gas diffusivity.147 In
another study, Wang et al. used physics-informed performance
metrics (fractional free volume and average void size) to assess
the gas separation of polymeric membranes. They were able to
screen polyamide membranes that exceeded the Robeson
upper bound plots for several gaseous mixtures.148 Researchers
have used chemistry informed ML to find promising
candidates for solid state polymer electrolytes for lithium-ion
batteries.149 Thus, incorporating the essential rules of physics
and chemistry has the potential to enhance the “intelligence” of
ML models and can be of significant importance in utilizing
ML to identify new polymers.

There is a computational cost associated with obtaining data
from different sources: High-fidelity data have better accuracy
and are more expensive to obtain, whereas low-fidelity data are
less accurate, but require a lower computational cost.150

Multifidelity models use data from multiple sources to address
the trade-off between fidelity and computational demands,
helping develop accurate ML models with minimal resource
use.151 Rall et al. developed a multiscale optimization
framework that integrates high-fidelity ion transport models
with ML to optimize membrane processes for water treat-
ment.152 Using the data generated from the one-dimensional
extended Nernst−Planck ion transport model, ANN was
trained to predict the performance of NF membranes and
served as a surrogate model of high-fidelity model. The authors
integrated this surrogate ML with mechanistic process models
to optimize membrane synthesis properties and overall process
design for membrane plant, reducing computational resources
and maintaining the accuracy of the physical model. Instead of
using ML as a surrogate for high-fidelity models, models across
different fidelity levels can also be integrated for inverse
membrane design. Lazin et al. suggested an efficient multi-
fidelity BO for solving inverse problems in the quantum
control of time-dependent system. By combining low- (prior
distribution) and high-fidelity (posterior distribution) models
for GP, this method enables efficient exploration of the nextT
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query point in BO, reducing computational time and
maintaining high accuracy in the optimization process.153

Generative ML can innovate and accelerate material
discovery by expanding the diversity of potential materials
used to design membranes. Generative adversarial networks
(GANs) can generate synthetic data with target properties by
exploiting sequential or graph representations of organic
materials.130 Several researchers also used transformer based
models to generate unique molecules using SMILES strings
and desired property values as inputs.154−156 Diffusion models
are the latest advancement in generative ML for a variety of
chemistry and drug design applications.157,158 Inspired by
nonequilibrated thermodynamics, these models are able to
generate 3D molecular structures through forward and
backward diffusion processes. These models captured the
chemical and physical properties of molecules represented via
graph structures to design target molecules.159 Park et al.
developed ZeoDiff relying on diffusion model architecture to
generate porous materials with user-desired characteristics.160

A big challenge in the application of ML on polymeric
membrane design is the adequate representation of polymers
and additives. Polymer structures are highly complex that have
dynamics ranging from various length and time scales.161 ML
for polymer design requires encoding polymers in formats that
are interpretable by computers. The chemical representation
technique based on SMILES uses a single molecular
representation to extract all the features from the polymer.162

The majority of research in this area is still primarily concerned
with the topology of individual monomers or cross-linkers,
whereas a polymer network might consist of topologies or
structural features that are never observed in monomers or
cross-linkers. For example, when two different monomers were
considered to react to form a new polymer, the newly
generated topologies may not be fully defined by the individual
monomers alone, and thus the new structure requires further
description.63 BigSMILES has recently emerged as an
extension to SMILES, which is tailored specifically to
polymeric systems. It can help in better representation of
homo-, co-, and block polymers and map out the nature of the
polymer in terms of its branched, network, and terminal group
information via bond descriptors, making it an ideal choice for
polymer representation.163 Researchers have often used
nanomaterials such as graphene oxide, titanium dioxide, and
carbon nanotubes as additives to modify membranes. These
materials are highly complex in terms of their physical and
chemical properties, yet researchers usually represent them as
categorical features in ML models which may lead to
oversimplification of their effects on membrane perform-
ance.26,72,164 The development of more robust techniques to
represent these additives can allow algorithms to learn more
nuances associated with their impact, aiding in the develop-
ment of more accurate ML models.

Another significant challenge in the process of developing
ML models is data management, data preprocessing, and data
scarcity. Certain models, including DNN, are incapable of
processing data sets that have missing values. Filling in missing
values with generated data, such as utilizing mean or median
values derived from statistical distributions or ML models, can
lead to a loss of some of its useful practical insights about the
model’s performance.64 Yuan et al. imputed gas permeability
data in the polymer gas separation membrane database using a
multivariate imputation by chained equations (MICE)
method, which predicts missing permeability values through

an iterative process via predictive models. The imputed data
was used to identify promising polymeric materials for
applications different from those for that were initially
intended.165 Data augmentation can expand the size and
diversity of training data sets to address data scarcity
commonly observed in polymer and membrane science.166

Tayyebi et al. generated 300 new SMILES strings by
randomizing atom ordering, increasing their data set size
from the original 583 points to a total of 17,500 data points.112

This data augmentation strategy helped the model train on
different representations of the same molecule, enhancing its
ability to grasp the chemical space limitations present in the
data set.167 Transfer learning can also address data scarcity by
transferring knowledge from a model pretrained on a larger,
related data set for new tasks.168 Using transfer learning for a
small data set of 12 membrane electrode assemblies (MEA),
Tan et al. investigated the influences of anode catalyst ink
formation on low-iridium membrane assemblies. By combining
transfer learning with the Harris Hawk optimization, the
authors significantly reduced experimental cost and achieved
high-performance MEA, demonstrating the potential of
transfer learning for materials optimization with small data
sets.169−171

5.2. Data Generation Using Computational Tools. A
major obstacle in designing polymeric materials using ML for
membrane application arises from the diversity of polymer
properties, which requires a substantial and high-quality data
set for precise modeling. MD simulations and DFT are
commonly used techniques implemented to simulate the
behavior of polymeric materials at the molecular scale, assisting
in the development of membranes with customized proper-
ties.172 Wei et al. investigated the diffusive response of water in
cross-linked polyamide membranes using MD simulation.
Their results were consistent with the experimentally obtained
flux values, suggesting that MD simulations can reliably
surrogate for laboratory-performed experiments.173 On the
other hand, DFT assists in quantum mechanical calculation of
the interactions between polymeric surface and salts or gaseous
molecules. This can provide fundamental insights into the
separation process and further help in the synthesis of selective
membranes.174,175

Owing to the improvements in computational power, it is
possible to run parallel computational simulations to generate
data, which can be used for ML modeling. High-throughput
computations have been used to generate vast databases to
determine the crystalline and optoelectrical properties of
polymers.176,177 A scalable modeling and rapid theoretical
(SMART) calculation approach has been presented that aims
to combine high-throughput calculations with ML for the
development of superior carbon capture materials.178 This
approach can be translated toward the ML process for the
development of membrane materials. Tao et al. utilized high-
throughput MD to simulate a large data set consisting of over
6,500 homopolymers and 1,400 polyamides to develop a ML
model that determines the FFV of polymers.103 Researchers
used grand canonical Monte Carlo (GCMC) and MD
simulations to train ML models with the capability to model
the gas separation behavior for binary gas mixtures in mixed
matrix membranes.179,180 Meng et al. generated a data set
containing 2D graphene-based membranes using CALYPSO, a
structural prediction tool based on particle swarm optimiza-
tion. Using this data set, the authors were able to screen
membranes for desalination with superior flux, salt rejection,
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and mechanical properties.181,182 Zhang et al. augmented a
polyamide NF data set having 102 points to 104 points by using
a combination of vibrational augmentation and DFT
calculations. They considered the 3D geometry of the
monomer structure along with the chemical coupling of
functional groups to spatially represent the monomer
groups.183

Membrane selectivity is impacted by the molecular
interactions between polymeric membrane functional groups
and targeted species (solutes or gases). DFT models are often
used to calculate the binding or adsorption energies which are
commonly used to study this interaction behavior. With the
advancement of high-throughput DFT, these interactions can
be calculated to be used as input features to train ML models.
Inclusion of these interactions can potentially aid in the design
of selective membranes that allow favorable transport of
targeted species. DFT calculations can also assist in modeling
energy barriers associated with multiple solute selectivity,
further helping in the design of ion selective mem-
branes.89,184,185 Thus, data generation using high-throughput
computations holds significant potential for enhancing ML
process and assist in the discovery of a superior class of
polymeric membranes for various engineering applications.
5.3. Data Extraction Using NLP and Large Language

Models (LLMs). Scientific research is growing at an
unprecedented rate with thousands of publications, reports,
and papers being published every year related to polymer,
material, and membrane science. It is extremely difficult for
scientists to keep up to date with these advances. NLP has
emerged as a facilitative approach for information retrieval
from literature in the past couple of years.186,187 It enables a
computer to understand, interpret, and generate human
language, bridging the gap between human communication
and digital data processing.188 NLP facilitates the extraction of
data from written texts in diverse formats, enabling efficient
analysis and interpretation of large volumes of information.
Information retrieval is the first step of NLP, which involves
collection of papers of interest as PDF, HTML, or XML
files.189 Once the papers are obtained, the next step is to
process the documents by cleaning up their text to remove
irrelevant content and special characters. This step is followed
by tokenization wherein the cleaned text is converted into
individual names or broad concepts, which are suitable for
NLP. Following tokenization, several methods can be used to
extract data from the input text. Named entity recognition
(NER) technique is utilized to focus on the identification and
classification of entities within the text. This process is
followed by word embedding wherein the text is transformed
into word vectors that can be used for further information
extraction.190 LLMs such as GPT, BERT, or LLaMA are the
latest advancement in this field and have shown great potential
for information retrieval. Unlike NER, which is a multistep
process requiring intermediate processing and classification of
links between entities, LLMs can directly be used to transform
input text into structured output data (as JSON documents or
other hierarchical structures), allowing for ease in the data
mining process.191

With the rapid advancement of NLP in the field of material
science, there have been multiple instances where it is used for
information retrieval.192−195 Shetty et al. leveraged this growth
in NLP and applied this knowledge to the field of polymer
science as they extracted and processed data from ∼0.5 million
publications.196 They trained word vector models on the

polymer literature corpus, encoding polymer domain knowl-
edge in the vector space. The data extracted from the literature
can facilitate the generation of training data for downstream
ML models. In this study, unsupervised ML was used to
identify application trends and generate meaningful informa-
tion. The authors were able to establish relationships between
monomer-polymer as well as property-polymer which helped
them cluster polymers based on their properties (e.g.,
conductivity, biodegradability, and adhesiveness). Additionally,
the authors demonstrated the capability of the model to
predict polymers with new functions. For example, a model
trained on a subset of data for a particular year could accurately
predict the occurrence of the polymer for a completely
different application in the subsequent years. This highlights
the potential of NLP in polymer science, allowing researchers
to uncover new insights and applications from a vast corpus of
literature. Thus, by leveraging the data extracted and processed
through NLP techniques, researchers can build more
sophisticated ML models, enhancing the ability to derive
meaningful insights and prediction from large data sets in
polymer science.

Developing a fully automated, end-to-end ML model that
regularly updates its data set from recently published literature
through NLP will revolutionize the field. However, this comes
with its own set of challenges, the biggest of which is to
develop a pipeline that can effectively embed textual, written,
or graphical data points into the correct features, especially in
cases with large dimensionality.
5.4. Collaborative Efforts and Open Data Sharing

Initiatives. Given that data serves as the fundamental basis for
ML, it is crucial to address data-related challenges, such as the
scarcity of adequate high-quality data or metadata. Various
techniques can be employed to acquire data, including manual
collection, high-throughput experiments or simulations, NLP,
curated databases, and user populated databases. Each of these
methods has its own specific factors to be considered.197

Manual data collection is tedious in nature, while high-
throughput experiments/simulations require specific expertise
and can be time-consuming, resource-intensive, and inter-
dependent.198 Open access databases for polymeric mem-
branes can offer a solution to the issues of data acquisition.
These platforms play a crucial role in enabling the prediction
and analysis of polymer properties, addressing the data scarcity
problem by organizing extensive data sets from various sources.

The Open Membrane Database (OMD) is a great step for a
collaboratory database in the field of membrane science, which
allows researchers to create a centralized archive for thin-film
composite RO membranes for water purification and
desalination purposes. It has data from over 1,000 different
types of polymeric membranes from peer reviewed journals
and patents.199 MSA and PoLyInfo consist of gas permeability
data for at least one of the gases among He, H2, O2, N2, CO2,
and CH4 for around 800 homopolymers. These databases have
already been used in ML studies to model the gas separation of
polymeric membranes.134,165 Additionally, OSN database is a
repository which contains a collection of publications with
their data sets for membrane applications such as NF, RO, and
gas separation.200 In the future, it is encouraged that
researchers upload their data sets along with their publications
as supplemental files or web sites (e.g., GitHub, Zenodo, and
Figshare) facilitating convenient access and retrieval of
experimental data.30 By sharing data, resources, and expertise,
authors can develop comprehensive databases containing
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information on material properties, synthesis methods, and
performance metrics. Open data sharing initiatives foster
innovation, reproducibility, and transparency by granting
access to high-quality data sets for training and validating
AI/ML models to researchers worldwide. Figure 3 gives a
summary of the commonly faced challenges during the
application of ML tools for membrane design, how they
impact model development process, and potential approaches
of dealing with these problems.

6. ENVIRONMENTAL IMPLICATIONS
The current research paradigm for membrane material
discovery and development is largely driven by the direct
design approach. Experimentally testing new polymeric
materials is costly, resource-consuming, and challenging,
which significantly slows down novel membrane design
process. ML-aided design strategy largely relies on capturing
key chemical structures with positive contributions to perform-
ance, which are used to screen top polymer candidates. This
general-purpose framework can be applied to discover
materials for environmental applications such as gas separation,
water purification, energy generation, solvent and other
resource recovery, carbon capture, which has significant real-
world impact.

One of the biggest open challenges in the field is the
development of polymeric membranes with high selectivity.
ML aided-inverse design approach has provided a fit-for-
purpose strategy to synthesize polymeric membranes with
exceptional selectivity. The ability to tailor membrane
selectivity depending on the application can assist in the
removal of contaminants and micropollutants from wastewater,
or the recovery of critical industry essential resources such as
expensive solvents, nutrients, and minerals.201,202 Using high-
performance materials for pollutant removal from wastewater
can improve process efficiency, reducing the reliance on
chemical treatments and minimizing the release of contami-
nants into aquatic ecosystems.203,204 With the advancement of
computational data generation tools, researchers have the
potential to tackle pressing issues such as the recovery of plant
essential nutrients or critical metals with minimal reliance on

experimental data. AI-driven membrane design enhances the
efficiency of carbon capture and industrial gas purification,
contributing to lower greenhouse gas emissions and improving
sustainability efforts across energy-intensive industries.205

Leveraging ML to screen candidates and design membranes
can minimize material waste and reduce energy consumption
through process optimization, which reduces the environ-
mental footprint of membrane design and operation.
Developing robust quantitative metrics to relate the chemical
structure of polymers to its biodegradability can aid in greener
synthesis routes; however, research in this area is still in its
infancy.206,207 Researchers need to ensure that the environ-
mental footprint of membrane processes is minimized
throughout their lifecycle, from production to end-of-life
disposal. These advancements align with the broader goals of
the circular economy by optimizing resource recovery and
minimizing waste.208

It is not implied through this review that the direct-design
approach is inferior to the ML-aided inverse-design approach.
ML research benefits from the data generated through
extensive experimentation as much as traditional experimen-
talists can benefit from a guided approach. The computational
resources required for ML model development and high-
throughput data generation are energy-intensive, potentially
offsetting the environmental gains realized through optimized
membrane performance and design. Broader adoption of ML
in membrane design may require comprehensive life cycle
assessments to ensure that the energy and material savings
during membrane operation outweigh the carbon footprint
incurred through AI computation.209 Interdisciplinary cooper-
ation among material scientists, chemists, physicists, computer
scientists, and environmental engineers is crucial for addressing
the issues and promoting innovation in the design and
discovery of polymeric membranes in an environmentally
sustainable way.
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Figure 3. Challenges, consequences, and solutions related to the application of AI for polymeric membrane discovery.
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